Assessing and Learning Alignment of **Unimodal Vision and Language Models**

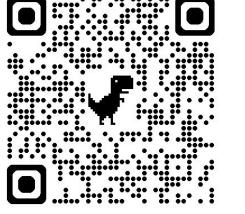
Le Zhang, Qian Yang, Aishwarya Agrawal

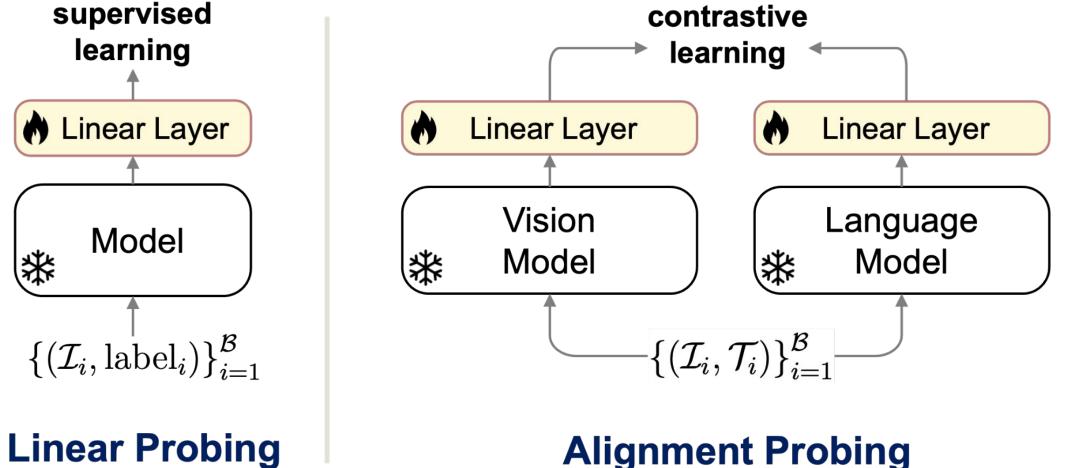
Part 1: Assessing Alignment

Key Questions

- Alignment Capability: How well can unimodal visual and language models align for zero-shot open-vocabulary tasks?
- Model Architecture Impact: Do larger models trained on extensive datasets yield better alignment? Does the choice of self-supervised learning (SSL) methods play a more significant role?
- **Representation Properties:** What properties of SSL representations—such as linear separability or clustering quality—drive stronger cross-modal alignment?

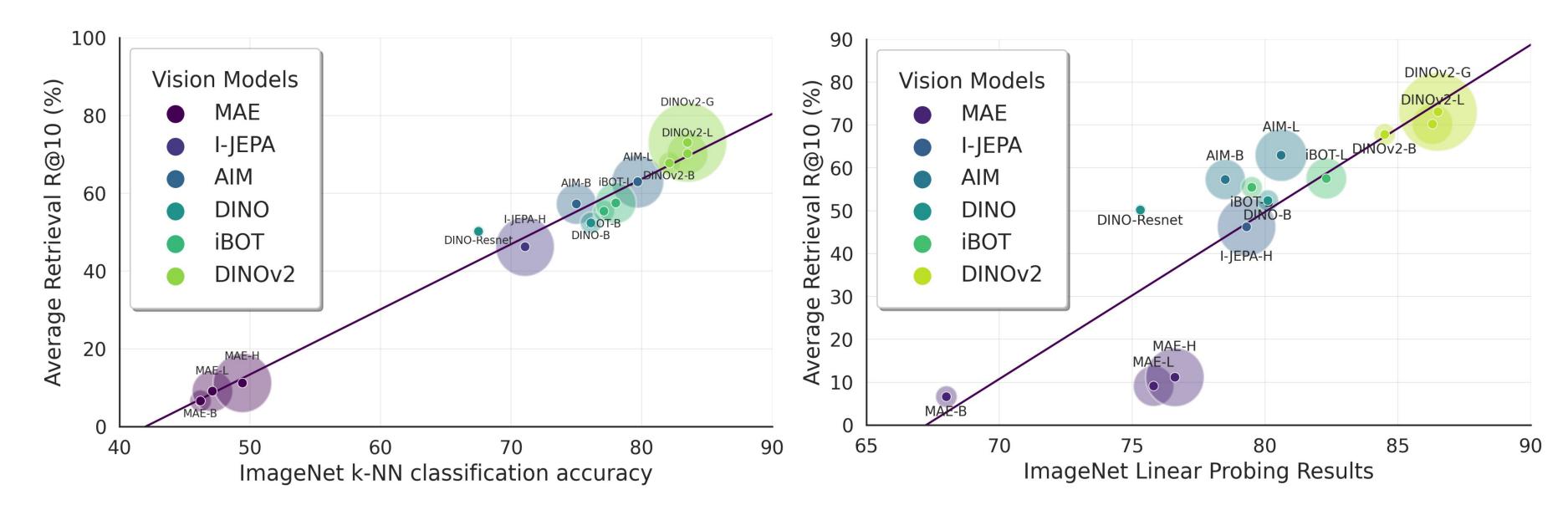
Project page Scan here !





Alignment Probing

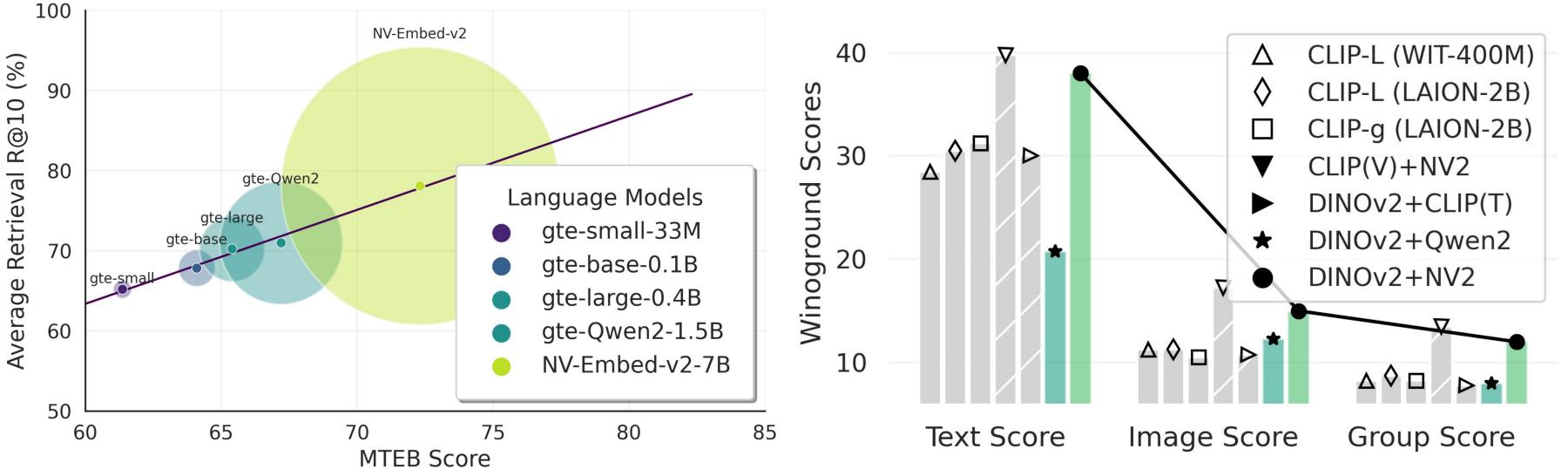
Visual-Language Alignment Probing: a direct assessment method inspired by linear probing in SSL evaluation.



Key Findings

- SSL Method Matters: DINOv2-B (86M) > AIM-L (1B parameters)> MAE-familay
- Representation Properties: Alignment performance strongly depends on the clustering quality of SSL representation, as reflected by k-NN performancemore than linear separability.

Θ Vision as Anchor



Key Findings

- Language Understanding Critical: language understanding capability is essential for vision-language reasoning tasks.
- CLIP Training Limitations: Training text encoders solely through CLIP-style contrastive learning proves insufficient for optimal performance.

• Pretrained LM Advantage: LLMs as text

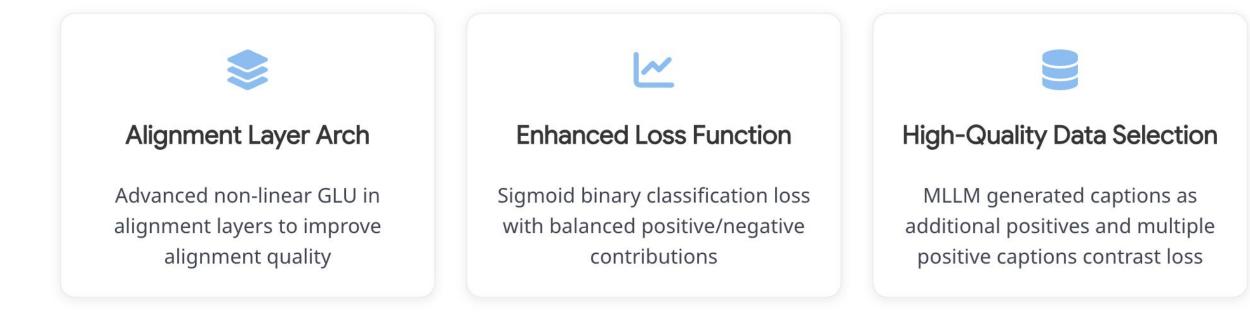
encoders emerges as a promising strategy for building robust VLMs

Part 2: Learning Alignment

We introduce Swift Alignment of Image and Language (SAIL), aligning pretrained unimodal vision and language models.

Our efficient two-step training pipeline optimizes both performance and computational costs.

Specifically, SAIL achieves superior alignment through three key optimizations:



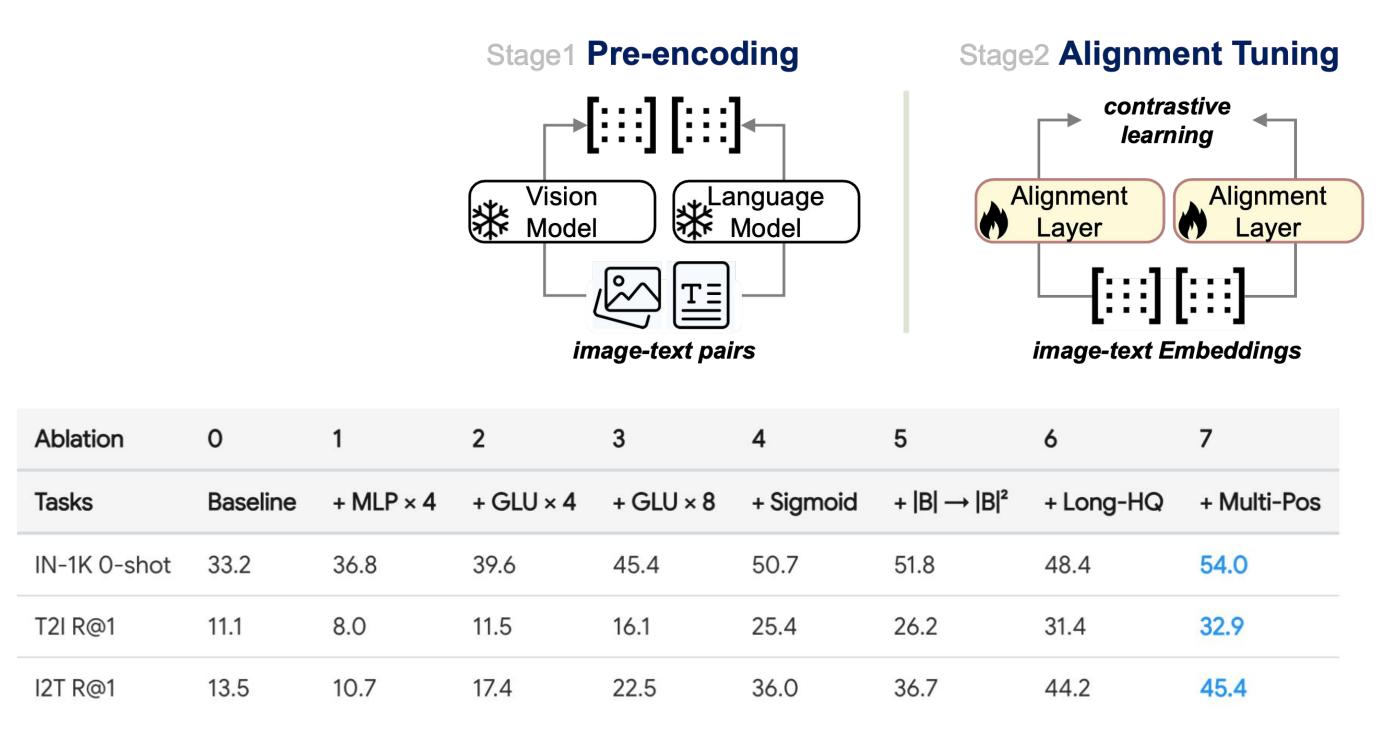


Table: Ablation results using CC3M on different methods. Baseline refers to aligning unimodal models with only a linear layer using infoNCE loss.

Zero-Shot Vision-Language Tasks

			MSCOCO		Flickr30k		Winoground			ImageNet	10 Classification	
Data	Model	I2T	T2I	I2T	T2I	T.	I.	G.	10 Avg.	Top1.	Avg.	

We train **SAIL** a **23M** Merged dataset.. The training of SAIL takes ~ 5 hours on a single A100 GPU with batch size up to 32,768.

SAIL surpasses CLIP with only ~6% of image-text pairs on broad downstream vision-language tasks.

Multimodal LLM tasks

SAIL transforms features from SSL models to be more language-compatible, thus better suited for integration with MLLMs.

			Ι	Model A	rchitect	ture: ViT	-B/16					
	DreamLIP	53.3	41.2	82.3	66.6	26.0	10.00	7.25	24.0	50.3	49.9	
	LiT‡	30.0	16.5	54.8	38.5	24.3	6.5	4.8	-	56.2	-	
CC12M	ShareLock(Llama3)†‡	26.0	13.5	53.9	34.9	26.3	12.8	5.3	-	59.1	-	
CC12M	ShareLock(NV2)†	39.6	23.1	68.1	49.3	33.25	13	9.75	15.56	61.9	62.0	
	SAIL-B (GTE)†	48.2	37.9	76.5	63.9	31.0	11.5	9.5	23.0	58.7	57.7	
	SAIL-B (NV2)†	57.3	45.3	84.1	70.1	35.0	17.25	13.0	24.4	68.1	65.4	
LAION400M	CLIP-B	55.4	38.3	83.2	65.5	25.7	11.5	7.75	19.3	67	65.5	
Model Architecture: ViT-L												
23M Merged	SAIL-L (NV2)†	62.4	48.6	87.6	75.7	40.25	18.75	15.0	28.9	72.1	73.4	
LAION400M	CLIP-L	59.7	43.0	87.6	70.2	30.5	11.5	8.75	20.0	75.9	72.7	

Table 6. Results on standard retrieval, complex reasoning, visual-centric, and classification tasks. We report Recall@1 for MSCOCO and Flickr30k, Text, Image, and Group scores for Winoground, and the average score across 9 visual patterns for MMVP. ‡ indicates cited results, and † denotes a ViT patch size of 14. 10 Classification tasks include: Food101, CIFAR10, CIFAR100, SUN397, Cars, Aircraft, DTD, Pets, Caltech101, and Flowers.

•	Large Language Model	Model@224px	VTune	SEED ^{IMG}	GQA	VizWiz	PoPE	TextVQA	MMB	VQA ^{v2}
•	Projector	0 DINOv2-L 1 DINOv2-L	×	61.47 62.12	61.08 61.53	44.12 46.59	85.5 85.7	45.37 45.92	56.96 58.85	74.4 74.69
SAIL	Alignment	2 SAIL-L	1	65.43	62.63	50.00	86.16	46.53	60.14	76.77
		3 CLIP-L/14*	X	64.05	61.58	48.87	85.74	54.56	63.06	75.32
•	Vision	4 CLIP-L/14*	\checkmark	64.15	61.54	49.93	85.73	54.18	64.12	76.36

Figure 6. Using SAIL's vision encoder for MLLMs.

Table 4. LLaVA-1.5 with various vision models. *Reproduced using OpenAI CLIP-L@224 [34]. VTune indicates if the vision encoder is fine-tuned during the instruction tuning stage.